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 Main idea behind the KamLAND

● A 100-200km baseline was 
needed to test the LMA solution 
to the Solar neutrino problem.

● In 1994, the first long baseline 
reactor anti-neutrino experiment 
was proposed by A. Suzuki.  

● A high reactor anti-neutrino flux 
allowed to measure the reactor 
anti-neutrino spectrum distortion 
and, therefore, determine ∆m2 

with a high accuracy.
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Research topics studied at KamLAND 

 

 Neutrino oscillations   

 Geo-neutrino

 Nucleon decay

 Solar neutrino 

 Double-beta decay

 SN and pre-SN neutrinos

 Dark matter



  

Charged particles interaction with 

matter results in scintillation and

Cherenkov light emission

KamLAND

Scintillator

(1000ton)

oil

water

Muon track in KamLAND

Photo-detectors: 

(Ø 50cm  PMTs)

oil

water

PMT Charge, p.e.

Ø 13m 135µm-thick plastic balloon



  

The anti-neutrino detection at KamLAND

ν e  p  e n

Time-and-space correlated prompt 
and delayed “point-like” event pairs 
can be easily separated from the 
accidental background. 

A “point-like” event   



  

The anti-neutrino flux variations at KamLAND
Fukushima I accident
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The (α,n) correlated background

Fast neutrons can be produced in the 13C(α,n)X reaction. In KamLAND 
main source of α-particles was decay of the 222Rn daughter: 210Po 

During 2007-2008 distillation campaign the 210Po decay rate was 
reduced by a factor of 20

Calibration source



  

 High precision neutrino oscillation data

PRD 88, 033001 (2013)

tan2 θ
12 

= 0.436+0.029

Δm2
21

 = 7.53±0.18 x 10-5 eV2

sin2θ
13

 =
 
0.023±0.002

KamLAND data covers 2 cycle of oscillation

strong evidence for neutrino oscillation
-0.025

2.3% error

L/E plot

(observed - B.G.) / (no osci. expected)



  

 238U (T
1/2

= 4.47109y) → 206Pb + 84He + 6e- + 6    + 51.7MeV (100%)

 232Th (T
1/2

= 14109y) → 208Pb + 64He + 4e- + 4    + 42.7MeV (100%)

 e

 e

Anti-neutrinos from the Earth crust and mantle



  

Geo-neutrinos carry information about the absolute amount and distribution

of the U/Th/K in the crust, mantle and core. This information may help to

understand mechanisms of Earth formation, and its dynamics.   

Distance from KamLAND (km)

The geo-neutrino flux at the KamLAND location
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The first geo-neutrino result

Nature 436:499-503, 2005



  

Background for geo-neutrino detection

(α,n)

Low reactor anti-neutrino flux period

geo-neutrino

reactor anti-neutrinos

accidentals



  

The latest geo-neutrino result

The anti-neutrino event rate from Uranium/Thorium β-decay: 1 event/month

The KamLAND result for the radiogenic heat: 14.2+7.9

 
TW while heat flow 

from the Earth’s surface is 47±2 TW

PRD 88, 033001 (2013)

-5.1

New tool to study Earth interior   



  

Future prospects for geo-neutrino detection

Since September 2013 all Japanese reactors were shutdowned.

Few reactors may be restated later this year but situation should 
remain favorable during the year 2014.



  

Pre-SN anti-neutrino detection (from Si core)

Red supergiants

- Antares (170pc)

- Betelgeuse (200pc)

Wolf-Rayer star

- Gamma Velorum (340pc)

Betelgeuse type at 200pc

Alarm system is being developed



  

The 0νββ test of seesaw mechanism by 
Yanagida

Basic process: dd → uue−e− . 

Decay rate ~ (neutrino mass)2

[T 1/ 2
0 ]−1=G0Q , Z ⋅∣M

0∣
2
⋅m 

2

G 0Q , Z −ph. space factor
∣M 0∣−NME
m=∣∑i

U ei
2⋅m i∣−eff.massof 

(|ΔL|=2)

ν=ν

Test of the Leptogenesis as explanation

for baryon asymmetry of the Universe
(Fukugita & Yanagida)



  

● A highest possible  S/N value taking into account known 
background composition (dominated by 10C, 208Tl, 11Be, 214Bi), the 
candidate isotope decay energy Q

ββ
, and existence of muon 

spallation background

● A slowest 2νββ decay rate to minimize background due to a 
relatively low energy resolution of KamLAND   

● Availability of isotope, possibility of a mass production within a 
short time period, a high enrichment level, and lowest cost per kg 

● Best radiopurity (U, Th, K), and existence of purification methods 

● Possibility to produce a stable liquid scintillator with a high light 
yield, and a high light transparency 

The 0νββ isotope selection for KamLAND



  

Xenon-136 was selected as best candidate

● available facilities for production at a ton scale in Russia 

● low cost compared to other enriched isotopes

● high enrichment level (91%)

● radioactive impurities removed during enrichment process; additional         
purification is possible using well established techniques

● soluble in LS (>3wt%)

● slowest 2ν2β background rate: T
1/2

(2νββ) > 1022 years (prior to EXO)

● no substantial light yield, and no transparency reduction in Xe loaded LS  



  

The KamLAND-Zen experiment

232ThO
2
W source (208Tl 2.6MeV γ-ray)

● 9m thick shielding against γ-rays and neutrons produced in rock

● Possibility to scale up the 0νββ experiment by replacing the mini-balloon  

● A 25µm-thick single layer Nylon 

mini-balloon (Ø3.08m) 

9m

low cost & quick start 
using existing 

neutrino detector!

Xe-LS 13ton

320kg (91% 136Xe) 



  

Clean room used to operate KamLAND-Zen



  

The mini-balloon inside KamLAND

refractive index differs by ~ 0.5% inside and outside of mini-balloon

PMT

boundary

neck part



  

Result from the 1st phase of KamLAND-Zen 
PRL 110 (2013) 

6, 062502

 Remove 110mAg from the Xenon loaded scintillator

 Reduce amount of 214Bi (Uranium) in the mini-balloon material

Main

backgrounds 

to 0νββ

Next phases



  

The 110mAg background 



  

PRL 110 (2013) 6, 062502 T
1/2

>1.9× 1025 y at 90% CL (136Xe world best limit)

Klapdor et al. 

Mod.Phys.Lett.A21(2006)1547

 76Ge combined

T
1/2

>3.0×1025 y at 90% CL
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The KamLAND-Zen timetable 

136Xe extraction 110Agm event rate?

DAQ

8 9 10 11 12  1 2 3 4 5 6 7 8 9 10 11 12  1 2 3 4 5 6 7 8 9 10 11 12

2011 2012 2013

LS Filtration

Second phase: 380-390kg of Xe to achieve 80meV sensitivity in 2014

mini-balloon 
installation

DAQ DAQ

Fill new 136Xe  
loaded LS

LS Purification LS Purification

After fire
recovery



  

The mini-balloon operation 

The 25μm mini-balloon is fragile and needs to be inflated all the time 
to avoid cracks in the mini-ballon film.

The mini-ballon weight should not normally exceed 10-15kg.

Any rapid changes in the mini-balloon weight should be avoided.

In order to fill (extract) Xe-loaded LS it is necessary to remove 
(supply) the same amount of a scintillator without Xenon. Precise 
control of incoming Xe-loaded LS and outcoming dummy scintillator 
density is required.

All scintillator containing enriched Xenon needs to be stored for re-
processing (Xe gas extraction).



  

Attempt to remove 110mAg

by using a 50nm filter 

1) 110mAg contamination during mini-balloon fabrication by

Fukushima-I fallout, and

2) cosmogenic production by Xenon spallation 

Xe extraction LS purification
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110mAg fallout map

110mAg was detected in soil samples near RCNS building using Ge detector



  

Nov 2012 July 2013



  

Near future for the KamLAND-Zen 

Confirm removal of the 110mAg background. 
Loaded scintillator + 136Xe (380-390kg). 
Expected sensitivity is m

ββ
~ 80 meV 

Construct a new cleaner mini-balloon to reduce 
the 214Bi background from the Nylon film. Load 
scintillator + 136Xe (600-800kg). Expected 
sensitivity is m

ββ
~ 40-60 meV

Σm
ν 
(meV)

The seesaw with Occam's razor   

(Frampton, Glashow, Yanagida)                                  

CP violation in neutrino oscillation ↔baryon 
asymmetry of the Universe

The normal hierarchy is excluded – consistent with 
the inverted hierarchy. 

It predicts  m
ββ

 = (47±1) meV
m

β
β

 (m
e

V
)



  

Search for the existence of oscillations 
into a 4th neutrino.

To probe ∆m2 values from 0.1 to a few 
eV2 one can use anti-neutrinos with 
energies of typical of radioactive 
decays (few MeV) and a baseline of 
several meters. 

 

Sterile neutrino search

75 kCi 144Ce

Φ 80cm W-shield + Cu skin



  

75 kCi 144Ce anti-neutrino source

144Pr β-decay Q-value: 3.0 MeV

~1 eV2 oscillation search

 L / E > 1 [m / MeV]

 ~ 40k events per year

Sterile neutrino search

search for an oscillation pattern as 
a function of L/E

ν
 



  

Clean environment for a new R&D 

Construction of two clean rooms at the Kamioka mine equipped with a 
compact Radon filter.  

Installation of a new Canberra HPGe detector in home-made shielding 
assembled from an ultra-low background Pb (30cm) and OFHC Cu (stored 
8-10years underground).



  

The KamLAND upgrade (2016)

We plan to install:

- a new high light yield LS;

- light collecting mirrors;

- new high Q.E. PMTs.

- Re-build OD muon veto;

- implement design modifications ...



  

Summary

We found a way to remove the 110mAg background to the 
136Xe ββ measurement. The KamLAND-Zen experiment 
was restarted in Dec 2013. We take physics data now.

We have a well established plan how to upgrade the 
KamLAND-Zen further in the next few years. 

We continue to use unique chance to improve neutrino 
oscillation and geo-neutrino results during the time window 
with a low reactor anti-neutrino flux (all Japanese nuclear 
reactors were stopped in 2013). 

We pursue R&D towards Dark Matter search, sterile 
neutrino search using a 144Ce anti-neutrino source.

We work on future KamLAND detector upgrade.



  

Thank you for your patience.



  



  

β-decays that change the nuclear charge Z by a value of ±1 are 
energetically impossible but a transition via two consecutive β-decays 
is possible. A double beta decay (2νββ) in the form of (Z,A) → (Z+2,A) 
+ 2e- + 2 ν

e
 was proposed first by M. Goeppert-Mayer in 1935.

54 
Xe

55 
Cs

56 
Ba

Conventional 2νββ-decay

136

136

136



  

Isotope Measured T
1/2

(2ν), y

150Nd  (1.4 ± 0.7) · 1020

136Xe  (2.38 ± 0.14) · 1021

130Te  (7.0 ± 0.9±1.1) · 1020

128Te  (7.2 ± 0.4) · 1024

116Cd  (2.9 ± 0.4) · 1019

100Mo  (5.7 ± 1.2) · 1020

96Zr  (2.1 ± 0.6) · 1019

82Se  (9.6 ± 1.0) · 1019

76Ge  (1.77 ± 0.12) · 1021

48Ca  (4.3 ± 2.2) · 1019

Most promising double-beta decay isotopes



  

Nuclear matrix elements calculations

Significant progress in theoretical calculations of NME was achieved recently



  

atm~2.4·10-3 eV2

atm~2.4·10-3 eV2

sol~7.6·10-5eV2

sol~7.6·10-5eV2

Cosmology (1eV)

SN1987A (20eV)

0νββ (0.3eV)

(SK, MINOS,T2K)

(KamLAND)

Neutrino mass pattern

3H decay (2eV)



  

137Cs fallout map
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