earch for low-energy neutrino from the GRB on the BUST

M.M. Kochkarov for the BUST Collaboration

Institute for Nuclear Research of RAS

Outlook

2 Baksan Underground Scintillation Telescope (BUST)

3 GRB LE ν_e , $\tilde{\nu_e}$

A B > A B >

 $\begin{array}{c} \textbf{Gamma-Ray Bursts} \\ \textbf{Baksan Underground Scintillation Telescope} & (BUST) \\ \textbf{GRB LE } \nu_e, \ \vec{v_e} \\ \textbf{Results} \end{array}$

Gamma-Ray Bursts

- First reported by Klebesadel, Strong & Olson (1973);
- Equivalent isotropic energy $\simeq 10^{51}$ - 10^{54} erg (Bloom et al. 2001);
- Observations to date of temporal duration and spectral hardness ratios confirm a bimodal distribution for GRB

Makhti Kochkarov for BUST collaboration

 $\begin{array}{l} \mbox{Gamma-Ray Bursts}\\ \mbox{Baksan Underground Scintillation Telescope (BUST)}\\ \mbox{GRB LE } \nu_e, \tilde{\nu_e},\\ \mbox{Results} \end{array}$

Popular Models for GRB Origins

Makhti Kochkarov for BUST collaboration

Gamma-Ray Bursts

Baksan Underground Scintillation Telescope (BUST) GRB LE $\nu_e, \tilde{\nu_e}$ Results

Questions

- The means by which gamma-ray bursts convert energy into radiation poorly understood.
- There is no accepted model for how this conversion occurs.
- Not completely interpreted the physical process for generating an emission of gamma rays which matches the durations, light spectra, and other characteristics of observed GRBs.

• ...

伺下 イヨト イヨト

Neutrino from GRB

GRBs as sources of high-energy neutrinos Fireball model for long GRBs:

Credit: M.Kowalski "Neutrinos, GRBs and IceCube", 2007

Makhti Kochkarov for BUST collaboration Search for low-energy neutrino from the GRB on the BUST

- 4 同 ト 4 ヨ ト 4 ヨ ト

 $\begin{array}{c} \text{Gamma-Ray Bursts} \\ \textbf{Baksan Underground Scintillation Telescope (BUST)} \\ \text{GRB LE } \nu_{e}, \ \vec{\nu_{e}} \\ \text{Results} \end{array}$

Baksan Underground Scintillation Telescope

- North Caucasus, mt. Andyrchy (N43.3°, E42.7°)
- Effective depth 850 m.w.e.

Baksan Underground Scintillation Telescope

- total number of detectors 3186;
- dimensions 17×17×11 m³;
- 8 planes (5 external, 3 inner);
- angular resolution $\simeq 2^{\circ}$;
- total mass of target 0.33 kt.

A B > A B >

Baksan Underground Scintillation Telescope standard scintillation detector

- aluminium tank 0.7×0.7×0.3 m³;
- PMT: FEU-49B;
- on white spirit based scintillator $(C_n H_{2n+2}, n \simeq 9);$
- operating threshold of pulse channel \simeq 8 MeV;
- time resolution 5 ns.

Gamma-Ray Bursts Baksan Underground Scintillation Telescope (BUST) GRB LE ve, ve Results

Method

Mean reactions:

• ${}^{12}C(\nu, e){}^{12}N$

•
$${}^{12}C(\tilde{\nu},e^+){}^{12}B$$

Background:

...

- ${}^{12}C(n,p){}^{12}B$
- ${}^{13}C(n,p){}^{13}B$

•
$${}^{12}C(\mu^-,\nu_\mu)^{12}B$$

Image: Image:

Makhti Kochkarov for BUST collaboration Search for low-energy neutrino from the GRB on the BUST

Data selection conditions

- "double events" two single events from the same detector of BUST with clean prehistory and with time interval between them Δt ≤ 150 ms (5 lifetimes of ¹²N);
- energy of secondary event less then max. decay energy of ¹²N;

Background research

Distribution of events by time interval in comparison with decay curve

Makhti Kochkarov for BUST collaboration

Background research

Distribution of events by time interval in comparison with decay curves

Makhti Kochkarov for BUST collaboration

Gamma-Ray Bursts Baksan Underground Scintillation Telescope (BUST) GRB LE $u_{e}, \tilde{v_{e}}$

Results

Effective area for ν flux

伺 ト く ヨ ト く ヨ ト

э

Effective area for $\widetilde{\nu}$ flux

・聞き ・ ほき・ ・ ほき

э

Gamma-Ray Bursts Baksan Underground Scintillation Telescope (BUST) GRB LE ve, ve Results

Neutrino candidate event selection

BUST data and GRBs on the time scale

・ 同 ト ・ ヨ ト ・ ヨ ト

Our preliminary results show:

- for BUST database during 2012 year no signal coincidence with Gamma-Ray Burst was detected;
- presented data only for one years (2012 yr.);
- in future we will continue treatment of our data for full time of BUST measurements (from 1980 ...)

 $\begin{array}{c} {\rm Gamma-Ray \ Bursts} \\ {\rm Baksan \ Underground \ Scintillation \ Telescope \ (BUST)} \\ {\rm GRB \ LE \ } \nu_e, \ \bar{\nu_e} \\ {\rm Results} \end{array}$

Thank you very much!

- 4 回 > - 4 回 > - 4 回 >

æ