Indirect searches for dark matter at Baksan and Baikal

S.V.Demidov INR RAS

Prospects of Particle Physics: Neutrino Physics and Astrophysics Valdai, 30 January 2014

- | Introduction: idea
- II Neutrinos from dark matter annihilations in the Sun: simulation of neutrino propagation
- III Sun survey at Baksan and Baikal
- IV Results
- V Conclusions

Signal from DM annihilations in the Sun

Capture of dark matter in the Sun

Leptons are registered at NTs

 e, μ, τ

if $\chi \chi \rightarrow SM$ particles \rightarrow neutrinos!

- DM particles scatter off nuclei in the Sun
- \blacktriangleright DM can become gravitationally trapped ($m_{DM}\gtrsim 5$ GeV)

 ν_e, ν_μ, ν_τ

- Accumulation and annihilation of DM in the center of the Sun
- Neutrino flux should be observed from the direction towards the Sun
- IceCube, SuperKamiokande, ANTARES, BUST (Baksan) and BDUNT (Baikal)

Neutrino signal from DM annihilations in the Sun

- Capture of DM particles by the Sun: $\sigma_{\chi p}^{SD}$ and $\sigma_{\chi p}^{SI}$.
- $\chi \bar{\chi} \rightarrow \dots$???
- ▶ Benchmark channels: $b\bar{b}$, W^+W^- , $\tau^+\tau^-$, $\nu_e\bar{\nu}_e$, $\nu_\mu\bar{\nu}_\mu$, $\nu_\tau\bar{\nu}_\tau$
- (Anti)Neutrinos are produced $\frac{dN_{\nu_j}^{\text{prod}}}{dE_{\nu_i}}$
- Propagation of neutrinos in the Sun and Earth (oscillations, interactions)
- Expected muon neutrino and muon fluxes from dark matter annihilation in the Sun

$$\Phi_{\nu\mu} = \frac{\Gamma_A}{4\pi R^2} \times \sum_{\nu_j, \bar{\nu}_j} \int_{E_{th}}^{m_{DM}} dE_{\nu_j} P_{\nu\mu}(E_{\nu_j}, E_{th}) \frac{dN_{\nu_j}^{\text{prod}}}{dE_{\nu_j}}$$
$$\Phi_{\mu} = \frac{\Gamma_A}{4\pi R^2} \times \sum_{\nu_j, \bar{\nu}_j} \int_{E_{th}}^{m_{DM}} dE_{\nu_j} P_{\mu}(E_{\nu_j}, E_{th}) \frac{dN_{\nu_j}^{\text{prod}}}{dE_{\nu_j}}$$

 $P_{\nu_{\mu}}(E_{\nu_{j}}, E_{th})$ and $P_{\mu}(E_{\nu_{j}}, E_{th})$ - probabilities to obtain neutrino or muon at the detector level *Neutrino signal*

Signal simulation: overview and parameters

- We use our C program; compare results with WIMPsim (M.Blennow, J.Edsjo, T.Ohlsson, 2008)
- Initial neutrino spectra at the center of the Sun: PYTHIA or Ref. Cirelli, Fornengo et al., NPB727 (2005) 99
- Annihilation point near the center of the Sun
- Neutrino oscillations, 3×3 scheme
- Matter effects: solar model, J.N.Bahcall, A.M.Serenelli, S.Basu (2005)
- NC and CC interactions (including *τ*-mass effects) in the Sun and the Earth: change in neutrino fluxes and spectra
- ▶ ν_{τ} regeneration: $\nu_{\tau} \rightarrow \tau^{-} + ..., \tau^{-} \rightarrow \nu_{\tau}, \bar{\nu_{e}}, \bar{\nu_{\mu}} + ...$ secondary neutrinos

Neutrino signal

Comparison with WIMPsim: ν_{μ} spectra at 1 a.u.

For the same initial neutrino spectra

Neutrino signal

Muon flux calculation

- Muons are produced in neutrino CC interactions
- Mean muon energy losses in rock (D.E.Groom, N.V.Mokhov, S.I.Striganov, 2001)
 - $\langle \frac{dE}{dx} \rangle = -(\alpha(E) + \beta(E)E)\rho$
- Multiple Coulomb scattering

Neutrino signal

Baksan Underground Scintillator Telescope

General view

- depth: 850 hg/cm²
- \blacktriangleright size: 17 m \times 17 m \times 11 m
- ► 3150 tanks of size 70 cm × 70 cm × 30 cm
- angular resolution: about 1.5°
- time-of-flight method, resolution: 5 ns
- Energy threshold $E_{th} \approx 1 \; {
 m GeV}$
- \blacktriangleright muon fluxes upward/downward ratio: $\sim 10^{-7}$

December 1978 - November 2009; livetime 24.12 years 1255 upward-going muons after selection

Baksan Underground Scintillator Telescope

MC simulation and reconstruction

O.Suvorova, M.Boliev, S.Mikheev et al., 1996

Muon energy threshold $E_{\mu} > 1$ GeV

Efficiency of registration upward-going muon with $E > E_{th}$ is about 0.3

Baksan Underground Scintillator Telescope

Upward going muons:

December 1978 - November 2009; livetime 24.12 yrs, 1255 events Event rate Muon distribution with respect to position of the Sun

About 50 events per year

Direction to the Sun corresponds to $\cos \Psi_{\mu-{\sf Sun}}=1$

Data and expected background

Sun below horizon

December 1978 - November 2009; livetime 24.12 yrs

cone half-angle γ 60 Data 1978-2009 Nevents dN/dCos(Y_{µSu} Background Data 1978-2009 year Sun below H 50 40 30 50 40 20 30 20 10 10 0 -0.8 -0.6 -0.4 -0.2 0.4 0.8 15 20 25 Cos(Ψ_{u-Sun}) $\Psi_{u-Sun}(\circ)$

Number

background

of

signal

events

and

inside

Background - from data with shifted position of the Sun

Optimization of analysis

In previous analysis we used cone half-angle γ which contains 90% of signal events

Optimization (Hill, Rawlins, 2003); expected limit on muon flux: sensitivity = $\frac{\overline{N}^{90}(\gamma)}{x(\gamma) \times A_{eff}(\gamma) \times T}$, where $x(\gamma)$ is a fraction of event inside cone half-angle γ , \overline{N}^{90} - mean expected upper limit

The effective area: $A_{eff}(\gamma) = \frac{\int dEd\theta \ A(E,\theta) \times \epsilon(E_{th},E,\theta) \times \Phi_{\mu}(E,\theta,\gamma)}{\int dEd\theta \ \Phi_{\mu}(E,\theta,\gamma)}$

Upper limits on muon fluxes from DM annihilations

Baikal Neutrino Telescope (NT200)

Expected number of events

$$N_{\mu} = \int_{E_{th}}^{M_{DM}} dE_{\nu} d\Omega A_{eff}^{\nu}(E_{\nu},\Omega) \frac{d^2 N_{\nu}}{dE_{\nu} d\Omega}$$

- 8 strings and 192 OM
- Angular resolution 4-5°
- Energy threshold $E_{th}pprox$ 10 GeV
- data from April 1998 to February 2003
- Events towards the Sun

NT200

Neutrino from the Sun and optimization

Upper limits on neutrino flux

Upper limits on neutrino flux

IceCube 2012, hard IceCube 2012, b b ANTARES 2007-2008, W⁺W⁻ ANTARES 2007-2008, b b ANTARES 2007-2008, τ⁺τ⁻ Baikal 1998-2003, W⁺W⁻ (pr.) Baikal 1998-2003, b b (pr.) Baikal 1998-2003, $\tau^{+}\tau^{-}$ (pr.) Baksan 1978-2009, W⁺W⁻ Baksan 1978-2009, b b Baksan 1978-2009, τ⁺τ⁻

Recalculation to upper limits on SD

G. Wikstrom, J. Edsjo, 2009

- Firstly, we recalculate $\Phi_{\mu} \rightarrow \Gamma_{A}$
- ► In equilibrium between capture and annihilation processes: $\Gamma_A = C_{DM}/2$
- Capture rate is determined by the SI and SD elastic cross section of DM particles on nucleons (Gould, 1987)
- ► Recalculation $\Gamma_A \rightarrow \sigma_p^{SD}, \sigma_p^{SI}$ (Olga Suvorova, S.D., 2010)

$$\Gamma_A = \Gamma_A^{SD} + \Gamma_A^{SI},$$

$$\frac{\sigma_p^{SD}}{\Gamma_A^{SD}} \cdot \Gamma_A^{Upp.Lim.} = \sigma_p^{SD,Upp.Lim.}, \quad \frac{\sigma_p^{SI}}{\Gamma_A^{SI}} \cdot \Gamma_A^{Upp.Lim.} = \sigma_p^{SI,Upp.Lim.}$$

 Upper limits on SD cross sections are strong - a lot of hydrogen in the Sun

Upper limits on SD elastic cross section: indirect searches

Upper limits on SD: direct and collider searches

Upper limits on SD: neutrino channels

- Simulation of neutrino signal from dark matter annihilations in the Sun has been performed
- New analysis of upward-going muon data collected for more than 24 years at Baksan and more than 1000 days at Baikal (NT200) has been performed
- New limits on muon flux, annihilation rate, elastic cross sections

Conclusions

Thank you!

Backup slides

- ► Experimental uncertanties: Baksan: ≈ 8% (instability of work of photomultipliers, dead tanks, ...), Baikal: ≈ 30%.
- ▶ Neutrino oscillation parameters: $\approx 5\%$ for W^+W^- and $b\bar{b}$, $\approx 8\%$ for $\tau^+\tau^-$
- \blacktriangleright Neutrino nucleon cross section up to 10% (even higher for $E_{
 u} <$ 10 GeV)
- For limits on SD and SI cross sections: astrophysical uncertanties (chemical composition of the Sun, local dark matter density ρ_χ, DM velocity distribution, ...)

Comparison of upper limits for W^+W^- and $au^+ au^-$ channels

- Comparable limits on muon fluxes
- ▶ Number of neutrinos (and antineutrinos) per annihilation: ≈ 1.0 for W^+W^- and ≈ 2.6 for $\tau^+\tau^-$
- Effect of oscillations

Upper limits on SI elastic cross section

Baksan Underground Scintillator Telescope

Baksan Underground Scintillator Telescope

Time-of-flight method and event selection

- time resolution is about 5 ns (Yu. Andreyev et al., 1979, S.P.Mikheev, 1984)
- probability of imitation of "wrong" direction is considerably diminished if more then two planes involved
- ▶ two special triggers for upward muons: T1 for zenith angle range 95° ÷ 180°, T2 - for almost horizontal events: 80° ÷ 100°

```
Trigger T1 Trigger T2
```

- \blacktriangleright \geq 3 scintillator planes
- \geq 2 negative Δt
- \blacktriangleright \leq 3 external scintillator planes
- \blacktriangleright = 2 vertical scintillator planes
- ► = 0 horizontal scintillator planes
- $\Delta t \geq 30$ ns (pathlength ≥ 10 m)

trigger rate 0.02 Hz (1800 events per day)

Cuts Level 1

- \blacktriangleright Only one reconstructed track with $\beta < 0$
- Enter point should be below exit point
- \blacktriangleright For T2: exclude events with 0 $<\phi<$ 180 with respect to least shallow depth

Cuts Level 2

- Only through going tracks (no stopping muons or neutrino interactions inside)
- ► Geometrical cuts to exclude events close to plane edge (1.5 m)
- Muon range inside detector > 500 g/cm² (excluded muons with $E_{\mu} < 1$ GeV)

 \blacktriangleright -1.3 < 1/eta < -0.7 (from MC: 95% of upward-going events)

December 1978 – November 2009; livetime 24.12 yrs; 1700 muons after Cuts Level 1; 1255 muons after Cuts Level 2