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ei ther  by solving the Schr{Sdinger equation o r  by studying the representa t ions  of the superconformal  group, 
which in the given case is a dynamical symmet ry  group. The mechanism of spontaneous breaking of the 
superconformal  group proposed in the paper  affects the t ime variable nontrivially,  and therefore  it would be 
interest ing to look for  general izat ions of the proposed mechanism to more  real is t ic  models .  It should also 
be noted that the example in the paper of construct ion of a dimensionless  quantity by means of a l imiting 
process  indicates that one must exerc ise  grea t  caution with regard  to arguments  based on dimensional 
considerat ions in supergravi ty  too. 

We are s incere ly  grateful to D. V. Volkov for his interest  in the work and discussion of its resu l t s .  
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AN A L G O R I T H M  F O R  C A L C U L A T I N G  M U L T I L O O P  I N T F G R A L S  

F . V .  Tkachev 

A class  of p integrals  which ar i se  in perturbat ive calculations of some problems in 
quantum field theory is considered.  An algori thm of analytic calculation of any p 
integral at the three- loop level convenient for real izat ion in the existing sys tems of 
analytic calculation is const ructed .  

1. The renormal iza t ion  group is one of the main tools of quantum field theory [1]. Therefore ,  the 
problem of calculating the coefficients of the renormal iza t ion-group  equations is of fundamental importance.  
There  are  also many physical ly interest ing problems that can be solved by the methods developed for  
reuormal iza t ion-group  calculations (see the review [2]), the charac te r i s t i c  feature in such cases  being the 
inapplicability of approximate calculat ions [2]. 

It is well known that the calculation of renormal iza t ion-group  quantities actually reduces  to 
calculation of the renormal iza t ion  coun te r te rms  of the corresponding Feynman d iagrams .  Fur ther ,  as is 
shown in [3], the problem of calculating the counte r te rm for any Feynman d iagram can be reduced in the 
f ramework of dimensional regular izat ion and the minimal subtraction scheme to the calculation as far  as the 
finite part  of some mass l e s s  integral of Feynman type with one external momentum and having one momentum 
integration less  than the original  d iagram.  The integrand consis ts  of a polynomial in the internal momenta 
and the external momentum, which occurs  in the numera tor  and the denominator  and is formed by several  
"propagators"  of the form (q2)-~, where n is an integer l a r g e r  than ze ro .  We shall call such integrals  p 
integrals .  We emphasize once more  that the problem of renormal iza t ion-group  calculations in 1 loops is 
equivalent to the calculation to the finite part  of p integrals  with I - 1 loops.  

Institute of Nuclear  Resea rch ,  USSR Academy of Sciences.  Transla ted f rom Teore t icheskaya  i 
Matematicheskaya Fizika,  Vol. 56, No.3,  pp.350-356,  September,  1983. Original ar t ic le  submitted 
May 17, 1982. 

866 0040-5779/83/5603-0866.r �9 1984 Plenum Publishing Corporat ion 



in [4, 5] a Gegenbauer  polynomial  technique was developed in the coordinate  space,  making it 
poss ib le  to calcula te  all two-loop p in tegra ls ,  and also to solve more  compl ica ted p rob lems  [61. However ,  
mos t  of the p rob l e m s  containing calcula t ions  of th ree - loop  p in tegra ls  a re  so c u m b e r s o m e  that they requ i re  
the use of a compu te r  for  the analyt ic  ca lcula t ions .  This  imposes  on the method of calculat ion the additional 
r equ i r emen t  of s impl ic i ty  of P rog ramming ,  which is not the case  for  the Gegenbauer  polynomial  technique.  

To o v e r c o m e  this difficulty, a r e e u r s i v e  a lgor i thm was const ructed in [7, 8] on the bas i s  of i n t eg ra -  
tion by par t s ;  in pr inciple ,  it p e rm i t s  the calculat ion of all t h ree - loop  p in tegra l s .  However ,  it is well 
known that r e e u r s i v e  a lgor i thms  a r e ,  as a rule ,  much l e s s  effect ive on a compute r  than nonreeurs ive  
a lgo r i thms .  In addition, the d i rec t  rea l iza t ion of the a lgor i thm of [8] on the ana ly t ic -ca lcula t ion  s y s t e m  
SCHOONSCHIP [9], apparen t ly  the fas tes t ,  leads  to the genera t ion  of an apprec iab le  number  of s i m i l a r  t e r m s  
in in te rmedia te  caIcula t tons ,  which r equ i r e s  excess ive  loss  of compute r  t ime on the i r  ana lys is  and reduct ion.  

A c h a r a c t e r i s t i c  fea ture  of the a lgor i thm of [8] is the repeated  use of one r ecu r s ion  relat ion 
("triangle ru le '9 ,  and also a number  of auxi l ia ry  re la t ions .  In the p resen t  paper ,  we give an explicit  
r e c u r s i v e  solution obtained by the t r iangle  rule that makes  it poss ible  to significantly inc rease  the output of 
p r o g r a m s  for  s y s t e m s  of the SCI-IOONSCHIP type by the use  of bui l t - in means  for  substi tuting the explici t  
express ion  instead of a r e e u r s i v e  p rocedure .  In fact ,  the need for  the auxi l ia ry  re la t ions  then d i sappea r s  
as well .  Af ter  this the only r e c u r s i v e  par t  of the a lgor i thm is in fact the evaluation of nonplanar  in tegra ls  
(see [8]), though the p ropor t ions  of them in real  ca lcula t ions  is smal l .  

2. The basic  idea of the a lgor i thm is to apply identi t ies of the type j'div=0 to d imens iona l ly -  
r egu la r i zed  in tegra l s  [7]. Simple a lgebra ic  manipulat ions make it poss ib le  to t r a n s f o r m  these identi t ies 
into re la t ions  between dif ferent  p in tegra l s .  In [71, a p re sc r ip t ion  was found (the t r iangle  rule) for  con -  
s t rue t ing  such identi t ies ,  these  making it poss ib le  a f t e r  repea ted  appIicat ion to exp re s s  p lanar  p in tegra ls  
in t e r m s  of in tegra ls  that can be calculated by succes s ive  applicat ion of the well-known fo rmula  of s ing le -  
loop integrat ion of m a s s l e s s  in tegra ls  (see Eq. (5) below). 

We demons t r a t e  the t r iangle  rule  in a s imple  example .  Consider  the two-loop p integraI  

G(a 8, n,, n2, n3)= ~ d"p d~q (q~'(q+k)~(p-q)2"'(p+k)~"'p2'~:) -~, (1> 

where  D is the complex p a r a m e t e r  of the dimension of space,  and o~ and /? a re  a r b i t r a r y  and nl, n2, n 3 a re  
integral  posi t ive number s .  

In the f r a m e w o r k  of dimensional  regular iza t ion  [10] identi t ies of the following f o r m  hold for  Feynman  
type in tegra ls  (including ones that d iverge  in the l imi t  when the regular iza t ion  is lifted): 

d" q j-d J(q)=O" 

Applying to the integrand of Eq. (1) the o p e r a t o r  

(2) 

0 - - (p-q) . ,  
aq~ 

and using the identity (2) and a lgebra ic  manipulat ions,  we obtain the r ecurs ion  re la t ion 

(3) 

G(a, 8, n~, n2, ns)=(D-2n~-a-~)-'[ce(G(o~+l, [~, n~, n2-t, n~)-- 

G(a-/-l, 8, nt--l, nz, n~))+~(G(a, ~+1, nt, nz- t ,  n3)-G(a, ~+1, n~, n~, n~-~))].  (4) 

Since the values of the integral  (1) for  n~, n2, o r  n 3 equal to zero  can be read i ly  found by double applicat ion 
of the fo rmula  (and i ts  genera l i za t ions ,  see [7, 8]) 

r F(a+~-D/2)(a) F B (D/2-A, D/2-~), (5) ~ dDpp -2~ (p--k) -2~=n~/~ (k ~) ~/ . . . .  ' (8 ) 

it is e a sy  to see that the r ecu r s ion  (4) is thus guaranteed by the boundary conditions for  the calculat ion of (1) 
for  admiss ib le  values  of the p a r a m e t e r s .  The choice of the different ial  ope ra to r  (3) is due to the p re sence  
of the t r iangle  subgraph cor responding  to the l ines  ~, ~, and n 3 in the graphical  r ep resen ta t ion  of the 
integral  (1). 

3. In the genera l  ease  [81, it is n e c e s s a r y  to solve the following r ecu r s ion .  Consider  the 
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expression 

F(n~ n~, n~, a, ~) =F(a )F(~)  ~ d~ q~m ((q+p~)~, (q+p~)~;~' P2 qZ,~)-~ 

0 
unde r  the s a m e  r e s t r i c t i o n s  on the p a r a m e t e r s .  Using the o p e r a t o r  - - -q~,  we obtain in comple te  ana logy 

Oq~ 
with the p rev ious  sec t ion  the r e c u r s i o n  re l a t ion  

F (n~, n2, n~, a, ~)=(D+m~2n~--a-~)-'[F (n,,.n~- t, n~, c~+t, ~)-- 

F (n,- l ,  n2, n~, ~z+l, [~)+F(n~, n2--1, n~, a, ~+t ) - -  F(n,, n~, n~-l ,  a, ~+1)].  

The values  of  F for  n~, n2, o r  n 3 equal to z e r o  a r e  r e g a r d e d  as boundary  va lues .  

We shall  so lve  (6) as fol lows.  We in t roduce  the o p e r a t o r s  

~a 

Then (7) can be r ewr i t t en  in the f o r m  

F (n,, n~, n~, ~, ~ ) =  

F (h i ,  n2 - -  1,  ha, 05 Jr- t ,  fi), 

f (n~ - -  1,  n2, n~, ~z + 1,  ~), 
f (nl, n~ - -  l, n3, ~, ~ + 1), 
f (hi ,  n2, n3 - -  t ,  a ,  ~ A_ 1),  

(D + m - -  2n~ - -  cr - -  ~) X 
• F (n~, n~, n~, ~, 13). 

(6) 

(7) 

(s) 

(9) F =  (e,+e~+e~-e,)A- 'F.  

The o p e r a t o r s  (8) sa t i s fy  the obvious  c o m m u t a t i o n  r e l a t ions  

A-i~,~=~,.~(A+I) -~, A-u (10) 

The unique l i n e a r  combina t ion  of oz, ~, and n i c o n s e r v e d  unde r  the act ion of all ei is 

I=a+~+n,+n~+n~.  (11) 

The r e su l t  of applying the r e e u r s i o n  (9) to F (N1, N 2, N3, A, ]3 ) is a sum, of the f o r m  

F (N, A, B) = 2 c (n. N,, A, B, a) F (n,, ~, ~), (12) 
{nt,rtIfiO 

where  ~ is a uniquely d e t e r m i n e d  (see (11)) funct ion of Ni ,  A, B, o~, and h i ,  and O c o n s i s t s  of  th ree  s u b -  
r eg ions  O j ,  j =1 ,  2, 3: 

O~={n,, ainu=0, O<n2<.N2, 0<na~<N3}, 02={n,, alO<n~<~N~, nz=0, 0<ns<N~}, (13) 

03= {n. a I O<n~<~N,, O<n~<<-N2, n3=0}. 

For all three subregions, a - A is a non-negative integer. We shall denote the corresponding coefficients 
by c), j = 1, 2, 3. 

Thus, it is necessary to find the coefficients e in (12). We fix a point {n~, a}fiO. Obviously, if we 
apply the recursion (9) without reduction of such terms, c (ni, Ni) will contain a sum of terms corresponding 
to all possible paths that can be taken to the point {n~, ~a} from {N~, A} under the action of the operators ei, 
it being necessary that the intermediate points of the paths do not belong to the boundary of O. The 
contribution from each path is known, and it is necessary to find the complete sum. 

For given point {n~, ~z}~O the number k i of each of the operators ei in an arbitrary sequence 

l eading  f r o m  {N,, A} to {n~, cr can be d e t e r m i n e d  uniquely:  

(14) 

k,=cz+n,--A--N~, k2=N,-n,, k~=[t+n3-B-N3, k,=N~-n~, k,+k3=N2-nz, K~Zk,=Z(N,-n,) .  (15) 
i i 

The condi t ion for  t e r m i n a t i n g  the r e c u r s i o n  on a r r i v a l  at the boundary  has  the f o r m  (to be spec i f ic ,  we 
c o n s i d e r  the subreg ion  0 3) 

(16) 
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We now have 

c~(n,, N.  ~z)F (n,, r ~) = (-) ~§ ( e ~ X - 9 .  .. (e~A-')~(N,, A, B), 7) 

where  the sum is taken over  all sets (14) sat isfying (15) and (16). F o r  c~, we have in ope ra to r  form 

c, (n, N, ~) --- ( - )  ~+~,~,A-' .., , , ~, (%_fl-') (e~A-'), (18) 

whence, using (10), we obtain 

c3 (n~, N~, a) = (-)'~+h'~ ~-7 ( ~  A_~)... (~,A_~) (A+k~§ (19) 

F r o m  the point of view of calculation of the coefficients  c we need not distinguish ~ and ~ or  ~2 and er 
(see (6)), and the re fo re  we introduce ~+ instead of et and e3 and ~_ instead of e2 and ef in o rd e r  to 
p r e s e r v e  the p roper t i es  of commutat ion with A. Then 

c~(n~, N~, a) -~ ( - )  ~+~'~ ( k,+k~ k~+k,-i k~ ) k~+k~--~) ( k~ ) y(k~§ (A+k~+k,-k~-k~+l)- ' ,  (20) 

where (~) is the binomial 

in which k = k+ + k_. 

with the initial condition 

coefficient ,  and 

Obviously, u sat isf ies  the r eeur s ion  

Y (k+, k_)=e§ (k+-t, k_)+~_A-'Y (k+, k _ - t ) =  

e+Y(k+-t, k_) (A+k+-k_-t)-% e_Y (k+, k_-l )  (A+k+-k_+t) -~ 

Y(O, O)=l, Y(k+, k-)=O, k+, k_<0. 

It is easy  to show by induction that the solution of (22) and (23) is given by 

Y(k+, k_)= ( 
k++k_ F (A-k_) 

k+ ) (A+k+-k-). r(A4k§ 

Finally,  we have 

Similar ly ,  

c~(n,, N~, q.)= (_) ~+h, ( k~-I-k,k, ) ~, [ k~+k,-ik2 ] \  ~ [ k~+k~+k~+k,-lk,+k, ) r (A-k~-k ,+ i )  r (A+k,+k~+i)  " 

(22) 

(23) 

I24) 

(25) 

c~(n,, N,, ~)=c.(n,, N. ~), (26) 

c~(n~, N,, ~)= (-),,+~ ( k,+k, ~ [ k2+k, ~[ k,+k~+k3+~-t ~ r(~-k~-k,) (27) 

Equations (25)-(27) together  with (12) provide the required  solution, it being n ece s sa ry  to replace  A by the 
express ion  ,~ =D + m - 2N 2 - A - B, and to use (15) and (11) to de termine  k i .  

In par t i cu la r ,  using (5), we can wri te  down the explici t  (but cumbersome)  express ion  for  the two- 
loop integral  (1), this being a genera l iza t ion of the resu l t  obtained in [4] by means of the Gegenbauer  
polynomial technique.  

The a lgor i thm descr ibed  in [8] now has the following general  form.  I. In the numera to r  expansion 
of the polynomial with respec t  to the basis of sca la r  invariants  and t rea tment  of the nonplanar t e r m s  as in 
[8]. II. The equations (6), (12), and (25)-(27) of the presen t  paper  a re  applied to the nontrivial  th ree - loop  
in tegrals .  III. Each t e r m  of the resul t ing express ion  contains a s ingle-loop integration,  which can be 
pe r fo rmed  by means of the express ion  (5) or  its general iza t ions  given in [7, 8]. IV. The resu l t  contains 
nontrivial  two-loop integrals  of three  types .  Two types (the most  numerous)  a re  special cases  of the integral  
(1), and the resu l t s  of the presen t  paper  a re  again applied to them; the p rocedure  descr ibed  in [8] is applied 
to the third type, which contains only a small  number  of different  t e rm s  because of the high sy m m et ry .  
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As an example ,  we mention that Gorishnii  (Joint Insti tute for  Nuclear  Research)  and Lar in  (Moscow 
State Univers i ty) ,  with the par t ic ipat ion  of the p re sen t  author,  have wri t ten two p r o g r a m  var ian t s  for  the 
s y s t e m  8CHOONSCHIP (on CDC-6500 computer )  which r ea l i ze ,  r e spec t ive ly ,  the a lgor i thm of [8] in a 
pure  fo rm and the a lgor i thm that uses  the r e su l t s  of the p resen t  paper .  F o r  compar i son ,  the second 
var ian t  was completed four t imes  f a s t e r  than the f i r s t .  In addition, the significant s impIif icat ion of the 
p r o g r a m  in the second var ian t  g rea t ly  faci l i tated its use on account of the modular  s t ruc tu re  and the 
additional functional poss ib i l i t i es ,  and also made poss ib le  an additional opt imizat ion,  so that the final 
var ian t  works  twice as fast  as the f i r s t  approx imate  var ian t ,  the gain m o r e o v e r  increas ing  with increas ing  
complexi ty  of the calculated in tegra l s .  But the mos t  impor tant  thing is that, because  of the s impl ic i ty  of 
the s t ruc tu re ,  it was poss ib le  to guarantee  a lmos t  comple te  absence  Of mis takes  in the second p r o g r a m ,  
in con t ras t  to the f i r s t  (for a p r o g r a m  involving 3000 l ines of or iginal  text this is not t r iv ia l ) .  At the p re sen t  
t ime,  this var ian t  is being intensively used for  calcula t ions  of t h r e e -  and four - loop  complexi ty  (examples 
can be found in [11, 12]). At p resen t ,  o ther  p r o g r a m s  with such poss ib i l i t i es  do not exis t .  

We conclude with the following c o m m e n t s .  F r o m  the point of view of compute r  rea l iza t ion  it is 
in genera l  meaningless  to dist inguish solutions in the fo rm of a c losed express ion  o r  in the f o r m  of an 
a lgor i thm,  since any express ion  is u l t imate ly  an a lgor i thm.  It is more  impor tant  to dist inguish a lgor i thms  
on the bas is  of the inc rease  in computing t ime  as a function of the complexi ty  of the or iginal  data (in our  case ,  
as a function of ni; see  (6)). Seen in this light,  the advantages  of explici t  expres s ions  of the type (12) and 
(25)-(27) a re  obvious,  and this was conf i rmed in p rac t i ce .  However ,  even when these  explici t  expres s ions  
a re  used the region of appl icabi l i ty  of the a lgor i thm r e m a i n s  l imited (for example ,  in calcula t ions  of deep 
inelast ic  sca t t e r ing  [13] a r e s t r i c t ion  mus t  be made to not too l a rge  moment s  of the s t ruc tu re  functions).  
This is due to the fact that the t ime  spent  on pure ly  a lgebra ic  p roces s ing  (calculation of t r a ce s ,  reduction of 
t r aces ,  e tc . )  i nc rea se s  ve ry  rapidly  with inc reas ing  number  and complexi ty  of the original  in tegra ls ,  and a 
way of overcoming  this difficulty cannot be seen.  If it is borne in mind that a l ready  in the following 
per turba t ion  o r d e r  the number  of different  topological types of in tegra ls  exceeds  the number  of types 
analyzed in [8] for  four- loop r e n o r m a l i z a t i o n - g r o u p  calcula t ions  by an o r d e r  of magnitude,  this alone 
suggests  that fu r ther  advance through the o r d e r s  of per turba t ion  theory  ( i . e . ,  calculat ion of r e n o r m a l i z a t i o n -  
group functions in r ea l i s t i c  models  at the level  of five loops or  more)  is hardly  conceivable  without 
rad ica l ly  new methods i r r e s p e c t i v e  of the s ize and nature  of the c o m p u t e r s .  

I thank V. A. Matveev and A. N. Tavkhel idze for  support  and also 8. G. Gorishnii  and S. A. La t in  
for  helpful d iscuss ions  and for  checking the r e su l t s .  
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