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either by solving the Schriédinger equation or by studying the representations of the superconformal group,
which in the given case is a dynamical symmetry group. The mechanism of spontaneous breaking of the
superconformal group proposed in the paper affects the time variable nontrivially, and therefore it would be
interesting to look for generalizations of the proposed mechanism fo more realistic models. It should also
be noted that the example in the paper of construction of a dimensionless quantity by means of a limiting
process indicates that one must exercise great caution with regard to arguments based on dimensional
considerations in supergravity too.

We are sincerely grateful to D, V. Volkov for his interest in the work and discussion of its results.
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AN ALGORITHM FOR CALCULATING MULTILOOP INTEGRALS
¥.V. Tkachev

A class of p integrals which arise in perturbative calculations of some problems in
quantum field theory is considered. An algorithm of analytic calculation of any p
integral at the three-loop level convenient for realization in the existing systems of
analytic calculation is constructed.

1. The renormalization group is one of the main tools of quantum field theory [1]. Therefore, the
problem of calculating the coefficients of the renormalization-group equations is of fundamental importance.
There are also many physically interesting problems that can be solved by the methods developed for
renormalization-group calculations {see the review [2]}, the characteristic feature in such cases being the
inapplicability of approximate calculations [2].

It is well known that the calculation of renormalization-group quantities actually reduces to
calculation of the renormalization counterterms of the corresponding Feynman diagrams. Further, as is
shown in [3], the problem of calculating the counterterm for any Feynman diagram can be reduced in the
framework of dimensional regularization and the minimal subtraction scheme to the calculation as far as the
finite part of some massless integral of Feynman type with one external momentum and having one momentum
integration less than the original diagram. The integrand consists of a polynomial in the internal momenta
and the external momentum, which occurs in the numerator and the denominator and is formed by several
"propagators® of the form (¢*)—", where n is an integer larger than zero. We shall call such integrals p
integrals. We emphasize once more that the problem of renormalization-group calculations in { loops is
equivalent to the calculation to the finite part of p integrals with I — 1 loops.
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In [4, 5] a Gegenbauer polynomial technique was developed in the coordinate space, making it
possible to calculate all two-loop p integrals, and also to solve more complicated problems [6]. However,
most of the problems containing calculations of three-loop p integrals are so cumbersome that they require
the use of a computer for the analytic calculations. This imposes on the method of calculation the additional
requirement of simplicity of programming, which is not the case for the Gegenbauer polynomial technique.

To overcome this difficulty, a recursive algorithm was constructed in [7, 8] on the basis of integra~
tion by parts; in principle, it permits the calculation of all three-loop p integrals. However, it is well
known that recursive algorithms are, as a rule, much less effective on a computer than nonrecursive
algorithms. In addition, the direct realization of the algorithm of [8] on the analytic-calculation system
SCHOONSCHIP [9], apparently the fastest, leads to the generation of an appreciable number of similar terms
in intermediate calculations, which requires excessive loss of computer time on their analysis and reduction.

A characteristic feature of the algorithm of [8] is the repeated use of one recursion relation
("triangle rule"), and also a number of auxiliary relations. In the present paper, we give an explicit
recursive solution obtained by the triangle rule that makes it possible to significantly increase the output of
programs for systems of the SCHOONSCHIP type by the use of built-in means for substituting the explicit
expression instead of a recursive procedure. In fact, the need for the auxiliary relations then disappears
as well. After this the only recursive part of the algorithm is in fact the evaluation of nonplanar integrals
(see [8]), though the proportions of them in real calculations is small.

2. The basic idea of the algorithm is to apply identities of the type {div=0 to dimensionally-
regularized integrals [7]. Simple algebraic manipulations make it possible to transform these identities
into relations between different p integrals. In [7], a prescription was found (the triangle rule} for con-
structing such identities, these making it possible after repeated application to express planar p integrals
in terms of integrals that can be calculated by successive application of the well-known formula of single-
loop integration of massless integrals (see Eq. (5) below).

We demoustrate the triangle rule in a simple example. Consider the two-loop p integral
G(a 5, Ry, N, ns) == j dnp qu (qzq(q-f-k) 28 (p_q) an(p+k)z1up2n;) —1’ (1)

where D is the complex parameter of the dimension of space, and @ and B are arbitrary and n,, n,, 0, are
integral positive numbers.

In the framework of dimensional regularization [10] identities of the following form hold for Feynman
type integrals (including ones that diverge in the limit when the regularization is lifted):

a
J a1t =0. 2
dq
Applying to the integrand of Eq. (1) the operator
7]
u

and using the identity (2) and algebraic manipulations, we obtain the recursion relation
G(a, B, ny, ny, ns) = (D—2n,—a—8) "' [a (G (at+1, B, my, ny—1, ny)—
Glaty, B, mi—1, ng, 16} ) FB(Gla, B+, ny, na—1, 1) — G la, B+1, m, 2o, ns—13)1. 4}

Since the values of the integral (1) for n, n,, or n, equal to zero can be readily found by double application
of the formula (and its generalizations, see [7,8])

T (a+p~D/2)
()T (p)

it is easy to see that the recursion (4) is thus guaranteed by the boundary conditions for the calculation of (1)
for admissible values of the parameters. The choice of the differential operator (3) is due to the presence
of the triangle subgraph corresponding to the lines «, 83, and n. in the graphical representation of the
integral (1),

f dPpp= (p—k) ~P =g /2 (j?) P/2—0~8 B(D/2—A,D/2—-B), {5)

3. In the general case [8], it is necessary to solve the following recursion, Consider the
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expression
F(ny na ey, ) =T()T(B) [ d2ggn. .. g ((g+p) ™ (a+p)*p1 pr 4 (6)

under the same restrictions on the parameters. Using the operator —a%‘q", we obtain in complete analogy
with the previous section the recursion relation
F(ny, ny, nsy o, B)=(D+m—2n,—a—B) ~'[F(n4, na—1, ny, a+1, ) —
F(n,—1, na, ns, atd, B)+F (14, na—1, ns, @, pt1) — F(ny, f, ns—1, a, p+1)]. (7)
The values of F for n,, n,, or n, equal to zero are regarded as boundary values.

We shall solve (6) as follows, We introduce the operators

F(nl, ne—1, ns, a + 1, ﬁ),

?1 F(n—1, ns, ng, o+ 1, B),
& F(ny, ns—1, ng, o, p+1)
: _ , ) M3y , 8)
2 F(n1, na, ns, o, B) F(ny, na, ns — 1, a0, B - 1),
& (D +m—2ny—o—f) X

. A X F("’h g, N3, O, ﬁ)'
Then (7) can be rewritten in the form

F=(é,+é+é,—¢,)A'F. (9)
The operators (8) satisfy the obvious commutation relations
A4, =6, (A+1)7, A'6,=é . (A-1)7". (10)
The unique linear combination of @, £, and n; conserved under the action of all éi is
I=a+p+ntn,tn.. 1n
The result of applying the recursion (9) to F(N1* N,, N, A, B) is a sum.of the form
F(N,4,B)= Z ¢(ny, Ny A, B,a) F (n,, ), (12)
{n4,0}60

where § is a uniquely determined (see (11)) function of N;, A, B, o, and n;, and O consists of three sub-
regions Oj, j=1,2,3:
0,={n;, a|n=0, 0<n,<N,, 0<n,<N;}, O,={ni, a|0<n, <N n,=0, 0<n,<N}, 13)
0y={n;, a|0<n,<N,, 0<n,<N,, n,=0}.
For all three subregions, @ — A is a non-negative integer, We shall denote the corresponding coefficients
by cj, j=1,2,3.

Thus, it is necessary to find the coefficients ¢ in {12). We fix a point {n, «}€0. Obviously, if we
apply the recursion (9) without reduction of such terms, c(n,, N,) will contain a sum of terms corresponding
to all possible paths that can be taken to the point {n, «} from {N, A} under the action of the operators e;,
it being necessary that the intermediate points of the paths do not belong to the boundary of O. The
contribution from each path is known, and it is necessary to find the complete sum.,

For given point {n: «}€0 the number k; of each of the operators éi in an arbitrary sequence
{€iy. vrbir} (14)

leading from {N, A} to {n,«} can be determined uniquely:

ky=atn—A—N, k,.=N—n,, k3=5+na_B—Na, ki=N;—ns, kytks=N,—n,, KEE ki=2 (Nt—ni)~ (15)

The condition for terminating the recursion on arrival at the boundary has the form {to be specific, we

consider the subregion O,)
s —s (16)
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We now have

& (n Ny ) F (i, )= (=) Y (6, A7) .(&,A-)F (N, 4,B),
where the sum is taken over all sets (14) satisfying (15) and (16). For c,,
es(ns, Niy ) = (*)wm—*z (6, A7Y).. (6,47,

whence, using (10), we obtain

cs(n, Nya)= (—)kZH‘éAE (éfx_ﬁ‘i—‘) ces (é“/i_i) (A+k,+k3-—k2—k4+1) -t

From the point of view of calculation of the coefficients ¢ we need not distinguish é1 and &, or é2 and e
(see (8)), and therefore we introduce &, instead of 81 and &, and é_ instead of e, and e, in order to

preserve the properties of commutation with A, Then

ko tk ko th—1
cs(ni,Ni,a)=(“)h’+k‘é4( 1k s)( ok

by

1

where (“) is the binomial coefficient, and

b
Yk k)= 2 Z(éahﬁ“)...(ég,ﬁ“),

Py
in which k =k, + k_. Obviously, Y satisfies the recursion
Y(ky, b )=8,A7'Y (ky—1, k_)+6_A'Y (ky, k-—1)=
.Y (ki—1, k) (A+k,—k—1) "+ .Y (ky, b——1) (A+k ~k_+1)
with the initial condition
Y(0,00=1, Y(ky, k-)=0, Fky k<0
It is easy to show by induction that the solution of (22) and (23) is given by

_ (kotho\ T(A—k.)
Y(k+,k-)—( , )m(A+k+—k_).

Finally, we have

cs (e, Ny, @) = (—) et ( kg:'ks) ( kytki—1 ) ( L ) I (A~k,—ki+1)

kz ki+k8

1
Similarly,
¢y (ny, Ny, @) =cs(m, NV, @),

ea(ng, Ny cr) = (—) b+ ( kitks ) ( ko tk, )( keyvthy ks ko —1 ) T(A—k—k)

k, kq k. tE, T(A+E +ks)

Equations (25)-(27) together with (12) provide the required solution, it being necessary to replace A by the

expression A =D + m - 2N, — A — B, and to use (15) and (11) to determine k.
2 i

In particular, using (5), we can write down the explicit (hut cumbersome) expression for the two-
loop integral (1), this being a generalization of the result obtained in [4] by means of the Gegenbauer

polynomial technique,

The algorithm described in [8] now has the following general form. I. In the numerator expansion
of the polynomial with respect to the basis of scalar invariants and treatment of the nonplanar terms as in
[8]. II. The equations (6), (12), and 25)-(27) of the present paper are applied to the nontrivial three-loop
integrals. III. Each term of the resulting expression contains a single-loop integration, which can be
performed by means of the expression (5) or its generalizations given in [7,8]. IV. The result contains

we have in operator form

) Y (e, eatlei—1) (A+ Ry Hea—Ep—hei 1),

F(A+k+k+1)

an

(19)

21)

24)

(26)

27)

nontrivial two-loop integrals of three types. Two types (the most numerous) are special cases of the integral
(1), and the results of the present paper are again applied to them; the procedure described in [8] is applied

to the third type, which contains only a small number of different terms because of the high symmetry.
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As an example, we mention that Gorishnii {Joint Institute for Nuclear Research) and Larin (Moscow
State University), with the participation of the present author, have written two program variants for the
system SCHOONSCHIP (on CDC-6500 computer) which realize, respectively, the algorithm of [8] in a
pure form and the algorithm that uses the results of the present paper. For comparison, the second
variant was completed four times faster than the first, In addition, the significant simplification of the
program in the second variant greatly facilitated its use on account of the modular structure and the
additional functional possibilities, and also made possible an additional optimization, so that the final
variant works twice as fast as the first approximate variant, the gain moreover increasing with increasing
complexity of the calculated integrals. But the most important thing is that, because of the simplicity of
the structure, it was possible to guarantee almost complete absence of mistakes in the second program,
in contrast to the first (for a program involving 3000 lines of original text this is not trivial), At the present
time, this variant is being intensively used for calculations of three- and four-loop complexity (examples
can be found in [11,12]D. At present, other programs with such possibilities do not exist,

We conclude with the following comments., From the point of view of computer realization it is
in general meaningless to distinguish solutions in the form of a closed expression or in the form of an
algorithm, since any expression is ultimately an algorithm. It is more important to distinguish algorithms
on the basis of the increase in computing time as a function of the complexity of the original data (in our case,
as a function of n;; see (6)). Seen in this light, the advantages of explicit expressions of the type (12) and
(25)-(27) are obvious, and this was confirmed in practice. However, even when these explicit expressions
are used the region of applicability of the algorithm remains limited (for example, in calculations of deep
inelastic scattering [13] a restriction must be made to not too large moments of the structure functions).
This is due to the fact that the time spent on purely algebraic processing (calculation of traces, reduction of
traces, etc.) increases very rapidly with increasing number and complexity of the original integrals, and a
way of overcoming this difficulty cannot be seen. If it is borne in mind that already in the following
perturbation order the number of different topological types of integrals exceeds the number of types
analyzed in [8] for four-loop renormalization-group calculations by an order of magnitude, this alone
suggests that further advance through the orders of perturbation theory (i.e., calculation of renormalization-
group functions in realistic models at the level of five loops or more) is hardly conceivable without
radically new methods irrespective of the size and nature of the computers.

I thank V, A, Matveev and A, N. Tavkhelidze for support and also S. G. Gorishnii and S. A, Larin
for helpful discussions and for checking the results,
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