Спектр космических лучей в области энергий выше «колена», измеренный на установках PRISMA-32 и PRISMA-YBJ

Олег Щеголев

Институт ядерных исследований Российской академии наук

План доклада

- Проект PRISMA (PRImary Spectrum Measurement Array)
- Результаты полученные на прототипах PRISMA-32 и PRISMA-YBJ
- Заключение

ШАЛ – это ядерный каскад в атмосфере!

«Новая схема развития атмосферных ливней предполагает, что:

- Начало развития ливня обусловлено столкновением первичного протона или более тяжелого ядра сверхвысокой энергии с ядром одного из атомов воздуха в атмосфере Земли.
- 2. В акте такого столкновения рождаются новые ядерно-активные частицы. Последующие столкновения каждой из них с атомными ядрами приводят к каскадному процессу размножения ядерно-активных частиц.
- Рождающиеся в процессах ядерных столкновений нейтральные π –мезоны при своём распаде дают начало электроннофотонной компоненте ливня, развитие которой описывается электромагнитной лавинной теорией.
- Заряженные π-мезоны при своём распаде дают µ-мезонную компоненту широких атмосферных ливней»

(Г.Т, Зацепин, 1954)

Тепловые нейтроны в ШАЛ

(PRImary Spectrum Measurement Array)

Электронно-нейтронный детектор

Эн-детектор способен регистрировать совместно:

- 1) электромагнитную компоненту ШАЛ (светосостав чувствителен к множественному прохождению заряженных частиц благодаря ZnS(Ag))
- 2) задержанные термализовавшиеся испарительные нейтроны, рожденные адронами ШАЛ в окружающем веществе

первый эн-детектор в составе установки «Мультик», БНО ИЯИ РАН, здание установки «Ковер», 2005 г.

Эн-детектор установки PRISMA-32, НОЦ НЕВОД, МИФИ, (2011 г.).

Сцинтиллятор

 ${}^{6}\text{Li} + n = {}^{4}\text{He} + {}^{3}\text{H} + 4.8 \text{ M} \Rightarrow \text{B}$

Сечение захвата теплового нейтрона

на ⁶Li = 946 барн

Заламинированный на белых листах бумаги сцинтиллятор ZnS(Ag)+⁶LiF Li обогащен изотопом ⁶Li до 90% толщина 30 мг/см², эффективность захвата нейтронов ~ 20% $^{10}B + n = {}^{4}He + {}^{7}Li + 2.3 M \Im B$

Сечение захвата теплового нейтрона

на ¹⁰В = 3880 барн

Залитый в силиконовый компаунд на белом листе бумаги сцинтиллятор ZnS(Ag)+ B₂O₃ Обычный В содержит 20% изотопа ¹⁰В толщина 50 мг/см², эффективность захвата нейтронов ~ 20%

Нейтроны в ШАЛ

. Form1						<u>_IQI</u> >
27920 122	X 69002 684	13651: 93	2409 81	1238-34	1325: 16	180: 19
8775 69			 число нейтр детекторе 	0H0B B		160: 10
3866 56	детекто	ре в числе ча	mm/5			149 12
2792: 37	Ось ливня					227: 16
3453 63	2433 63	3427.68	1696 28	1298. 31	780. 21	541: 19
2688 85	2105. 93	803: 47	1323 32	1124: 13	636 34	251: 13
1356 60	1592. 48	620.30			441: 10	160 18
files= 10-30.e	m n	ext Sea	rch Stop	0 M=7 Noum=20 28.10.2012	^{133 T * 3484} Lg(N	e)=7.6

В режиме регистрации ШАЛ производится оцифровка сигналов с эн-детекторов установки в течении 20 мс с шагом 1 мкс.

Триггером служит одновременное превышение порога срабатывания любых двух детекторов.

Показание в первую мкс соответствует прохождению электромагнитной компоненты ливня через сцинтиллятор, а задержанные импульсы – термализовавшимся испарительным нейтронам, рожденным адронами ШАЛ

электронно-нейтронный детектор vs адронный калориметр

Параметр	эн-детектор	адронный калориметр
объект регистрации	вторичные тепловые нейтроны, рождённые высокоэнергичными адронами в стволе	высокоэнергичные адроны на некотором удалении от оси
число адронов	можно оценить	измеряется
энергия адронов	-	измеряется
динамический диапазон	~ 10 ⁴ нейтронов/м ²	~ 5 адронов/м ²
электромагнитная компонента	измеряется	-
площадь	$\sim 10^2 - 10^4 \text{m}^2$	~ 10² m²
простота изготовления	просто	сложно
простота транспортировки	просто	сложно
цена	низкая	высокая

PRISMA-32

установка PRISMA-32 – это прототип проекта PRISMA, состоящий из 32-х эн-детекторов, расположенный в НОЦ НЕВОД (МИФИ, Москва), работает с 2012 года по настоящее время

PRISMA-YBJ

установка PRISMA-YBJ – это прототип проекта PRISMA, состоящий 4-x ИЗ ЭНдетекторов, работавший В Тибете на плато YangBaJing на высоте 4300 м над уровнем моря с 2013 по 2017 г.

3.4

Моделирование

RPC, plastic Ground (Concrete) Для моделирования применялись пакеты CORSIKA7.5 и GEANT4.10.

В CORSIKA были использованы модели QGSJETII-04 и FLUKA_2016.

В GEANT4 были использованы модели QGSP, BIC и NeutronHP.

Схема моделирования

Сбор данных и статистика для PRISMA-32

Работает с 01.02.2012 по настоящее время

Условия отбора событий:

Ось ливня внутри площади установки 30x20 м 6-кратные совпадения с суммарным энерговыделением ϵ >24 MIPs

Число триггеров – 2х10⁵

Number of selected events -10^5

Временные ворота для регистрации нейтронов - T=0.1-20 ms Эффективность регистрации нейтронов $\approx 8.5\%$

Все импульсы оцифровываются и применяется селекция нейтронных сигналов по форме импульса.

Сбор данных и статистика для PRISMA-YBJ

Работала с 30.08.2013 по 02.03.2017

Условия отбора событий

Ось внутри круга радиусом 6 м 4-кратные совпадения с суммарным энерговыделением ε>10 MIPs

Число триггеров – $3*10^6$ Число отобранных событий – $4x10^5$ Временные ворота для регистрации нейтронов - T=0.1 – 20 ms Эффективность регистрации нейтронов $\approx 13\%$

Все импульсы оцифровываются и применяется селекция нейтронных сигналов по форме импульса.

Спектр ШАЛ по числу нейтронов

Полученный экспериментально наклон спектра ШАЛ по числу нейтронов равен 1.95+/-0.05 для Москвы и 1.95+/-0.05 для Тибета

Спектр ШАЛ по числу нейтронов с установок PRISMA-32 (7 лет) и PRISMA-YBJ (3.5 года)

Спектр ШАЛ по числу высокоэнергичных адронов

Спектры ШАЛ по числу высокоэнергичных адронов (для различных пороговых энергий от 50 ГэВ до 1 ТэВ), измеренный на адронном калориметре установки KASCADE из работы: Hörandel J. R. et al., Proc. 27th ICRC 1, 137 (2001)

Зависимость среднего числа зарегистрированных нейтронов от энергии ливня для PRISMA-32

Энергетический спектр ШАЛ с установок PRISMA-32 за 7 лет работы и PRISMA-YBJ за 3.5 года работы

Первичная энергия ливня восстанавливалась из числа зарегистрированных в событии нейтронов

Х Зацепинские чтения, 07.06.2019

Заключение

- Установка PRISMA-32 работает с 2012 года в непрерывном режиме. На данный момент накоплены данные за более чем 7 лет. Установка PRISMA-YBJ проработала с 2013 по 2016. Были накоплены данные за 3.5 года.
- На установках были измерены спектры ШАЛ по числу нейтронов. Результаты хорошо согласуются друг с другом.
- Наклон измеренного спектра ШАЛ по числу совпадает с наклоном спектра ШАЛ по числу высокоэнергичных адронов, измеренным установкой KASCADE.
- При помощи моделирования были получены зависимости числа зарегистрированных нейтронов от первичной энергии ливня.
- Из спектров по числу нейтронов были восстановлены энергетические спектры ШАЛ в диапазоне энергий 3 40 ПэВ. Спектры не противоречат результатам полученным в других экспериментах.

Спасибо за внимание