Квазиупругие взаимодействия заряженным током мюонных нейтрино в эксперименте MiniBooNE и NOvA

Лучук Станислав

7 Июня 2019

· 由下 (周下 (王下) (王下) 王

1/17

- CCQE-like = QE + MEC \rightarrow события подобные квази-упругим событиям.
- В MiniBooNE измерили усредненное по спектру CCQE-like сечение на углероде при энергии нейтрино 0.788 ГэВ. Включены события с недетектируемыми нуклонами в конечном состоянии. При этих энергиях основным источником нуклонов является возбуждение 2p-2h состояний в остаточном ядре.
- ▶ В 2p-2h секторе существует несколько вкладов в двух-частичные токи: рассеяние на обменном пионе, рождение пиона и его поглощение вторым нуклоном $\gamma(W) + N \rightarrow \pi + N$, рождение Δ изобары и $\Delta N \rightarrow NN$
- ▶ Выполнены расчеты CCQE и 2p-2h вкладов в рассеяние лептонов на ядрах, используя модель искаженных волн в импульсном приближении (RDWIA) для описания QE функции отклика [A.V. Butkevich and S.V. Luchuk, PRC97, 045502 (2018)]. Подход успешно проверен на данных ¹²C(e, e[′])
- Определен аксиальный форм фактор нуклона *F_A* и КУ-подобные сечения нейтрино в рамках модели RDWIA+MEC на данных эксперимента MiniBooNE.
- Представлена оценка квазиупругих сечений в эксперименте NOvA в рамках RDWIA+MEC и определен ожидаемый вклад токов обменных мезонов при энергиях этого эксперимента.

Дифференциальные инклюзивные сечения рассеяния электрона σ^{el} и нейтрино σ^{cc} $e(\nu_{\mu})(k_i) + A(p_A) \rightarrow e^i(\mu)(k_f) + X$

можно выразить через ядерные фунции отклика R_i

$$d^{3}\sigma^{el}/d\varepsilon_{f}d\Omega_{f} = \sigma_{M}(V_{L}R_{L}^{(el)} + V_{T}R_{T}^{(el)}),$$

$$d^{3}\sigma^{cc}/d\varepsilon_{f}d\Omega_{f} = \frac{G^{2}\cos^{2}\theta_{c}}{(2\pi)^{2}}\varepsilon_{f}|\mathbf{k}_{f}|(\mathbf{v}_{0}R_{0} + \mathbf{v}_{T}R_{T} + \mathbf{v}_{zz}R_{zz} - \mathbf{v}_{0z}R_{0z} - h\mathbf{v}_{xy}R_{xy}),$$

где $\Omega_f = (\theta, \phi)$ это телесный угол для импульса лептона, $\alpha \simeq 1/137$ это постоянная тонкой структуры, $G \simeq 1.16639 \times 10^{-11} \text{ МэB}^{-2}$ это константа Ферми, θ_C угол Кабибо (сов $\theta_C \approx 0.9749$), $\sigma_M = \frac{\alpha^2 \cos^2 \theta/2}{4\epsilon_i^2 \sin^4 \theta/2}$ - сечение Мота. Коэффициенты связи электрона V_k и нейтрино v_k являются кинематическими факторами, которые зависят от кинематики лептона (A.Butkevich et al. PRC 76, 045502 (2007)). Функции отклика выражаются через компоненты адронного тензора, следующим образом: $R_I^{(el)} = W^{00(el)}, R_T^{(el)} = W^{xx(el)} + W^{yy(el)}, R_0 = W^{00(cc)}, R_T = W^{xx(cc)} + W^{yy(cc)},$

 $\bar{R_{0z}} = W^{0z(cc)} + W^{z0(cc)}, R_{zz} = W^{zz(cc)}, R_{xy} = i (W^{xy(cc)} - W^{yx(cc)}),$

и зависят от переменных (Q^2, ω) или ($|q|, \omega$). Они описывают электромагнитные и слабые свойства адронной системы.

Вся информация о структуре ядра и взаимодействиях в конечном состоянии(FSI) содержится в электромагнитном или слабом СС ядерном тензоре. Они представлены произведениями элементов матрицы перехода ядерного электромагнитного или СС оператора $J_{\mu}^{(el)(cc)}$ между начальным ядерным состоянием $|A\rangle$ и конечным состоянием $|X\rangle$ как

$$W_{\mu\nu} = \sum_{f} \langle X | J_{\mu}^{(el)(CC)} | A \rangle \langle A | J_{\nu}^{(el)(CC)\dagger} | X \rangle,$$

где взята сумма по недетектируемым состояниям X. Это общее уравнение, которое включает все возможные конечные состояния. Таким образом, адронный тензор может быть представлен в виде суммы по 1p - 1h и 2p - 2h, плюс дополнительные каналы:

 $W^{\mu\nu} = W^{\mu\nu}_{1p1h} + W^{\mu\nu}_{2p2h} + \cdots$

В импульсном приближении (IA) 1p - 1h канал дает хорошо известные КУ функции отклика и 2p - 2h адронный тензор определяет 2p - 2h МЕС функции отклика. Функции R_i могут быть записаны как сумма $CCQE(R_{i,QE})$ и $MEC(R_{i,MEC})$ функций отклика $R_i = R_{i,QE} + R_{i,MEC}$

1p-1h CCQE функции отклика в рамках RDWIA

Элементы матрицы перехода ядерного электромагнитного или CC оператора $J_{\mu}^{(el)(cc)}$ имеют форму

 $< p, X|J^{\mu}|A> = \int d^{3}rexp(itr)\overline{\Psi}^{-}(p,r)\Gamma^{\mu}\Phi(r),$

где Г^μ вершинная функция, Ф и Ψ⁻ релятивистские волновые функции начального и конечного состояний.

• Слабый заряженный нуклонный ток имеет V-A структуру $J^{\mu(cc)} = J_V^{\mu} + J_A^{\mu}$. Вершинная функция имеет вид $\Gamma^{\mu(cc)} = \Gamma_V^{\mu} + \Gamma_A^{\mu}$, где $\Gamma_V^{\mu} = F_V(Q^2)\gamma^{\mu} + i\sigma^{\mu\nu}\frac{g_{\nu}}{2m}F_M(Q^2)$ вершинная функция векторного тока, а $\Gamma_A^{\mu} = F_A(Q^2)\gamma^{\mu}\gamma_5 + F_P(Q^2)q^{\mu}\gamma_5$

вершинная функция аксиального тока. F_V и F_M - слабые векторные форм факторы, F_A и F_P аксиальный и псевдоскалярный форм факторы $F_A(Q^2) = F_A(0)/(1 + Q^2/M_A^2)^2$, $F_P(Q^2) = 2mF_A(Q^2)/(m_{\pi}^2 + Q^2)$.

- Релятивистские волновые функции связанных нуклонных состояний Ф вычисляются в оболочечной модели независимых частиц (IPSM), как решение уравнений Дирака.
- ▶ Заполненность (IPSM) орбиталей ¹²С составляет в среднем 89% (D. Dutta et al.(2003) JLab data, J.J. Kelly (2005)) и 87% для ⁴⁰Са(Ar).
- Мы предполагаем, что потерянная численность может быть приписана NN-корреляциям на коротких расстояниях в основном состоянии (C.Ciofi degli Atti et al., PRC53, 1689 (1996)).
- В RDWIA подходе учитываются взаимодействия в конечном состоянии (FSI). Искаженная волновая функция Ф выбитого нуклона вычисляется, как решение уравнения Шредингера [LEA code J.J. Kelly, 1995], содержащее релятивистский оптический потенциал (EDAD1 approximation) [E.Cooper et al., 1993].

2p-2h MEC в рамках модели Ферми газа

Адронный тензор 2p-2h канала с импульсами двух нуклонов p'_1 и p'_2 выше энергии Ферми k_F и двух дырок с импульсами h_1 и h_2 ниже энергии Ферми

$$\begin{split} W^{\mu\nu}_{2p-2h} &= \frac{V}{(2\pi)^9} \int d^3p_1^{'} d^3p_2^{'} d^3h_1 d^3h_2 \frac{M^4}{E_1 E_2 E_1^{'} E_2^{'}} \Theta(p_2^{'} - k_F) \Theta(p_1^{'} - k_F) \Theta(k_F - h_1) \Theta(k_F - h_2) < \\ 0|J^{\mu}|h_1 h_2 p_1^{'} p_2^{'}| > < h_1 h_2 p_1^{'} p_2^{'}|J^{\nu}|0 > \delta(E_1^{'} + E_2^{'} - E_1 - E_2 - \omega) \delta(p_1^{'} + p_2^{'} - h_1 - h_2), \end{split}$$

где M - масса нуклона, E_i и $E_i^{'}$ - энергии дырок и частиц, $V = 3\pi^2 Z/k_F^3$.

- Вычисления трудоемкие. Используют приближения различных групп.
- Мы использовали для электрослабых функций отклика R_{i,MEC} рассеяния лептона на углероде параметризации точных MEC расчетов [I.Ruiz Simo et al., J.Phys. G44,065105 (2017)].
- Эти параметризации как функции (ω, q) верны в области переданных импульсов |q| = 200 - 2000 МэВ.

Рассеяние ${}^{12}C(e, e')$.

Продольная F_L и поперечная F_T функции отклика, посчитанные в RDWIA+MEC приближении при |*q*| = 300, 380 и 570 МэВ, как ϕ ункции переданной энергии ω . Представлены вклады QE, NN-коррелированных пар и 2p-2h MEC. Данные из P.Barreau et al. Nucl.Phys. A402.515 (1983)(Saclav): J. Jordan. Nucl.Phys. A603,117 (1993). 2p-2h МЕС вклад увеличивает поперечную функцию отклика при больших переданных энергиях.

Инклюзивное сечение как функция переданной энергии ω для ${}^{12}C(e, e')$ рассеяния. Сплошная линия - результаты RDWIA+MEC, пунктирная и штрих-пунктирная линии - вклады от RDWIA и 2p - 2h MEC, соответственно. Данные взяты из O.Benhar et al. Rev.Mod.Phys.,80,189 (2008). Рисунки соответствуют разным значениям *q*_{QE}. Вклад MEC возрастает с ω и достигает максимума между $\omega_{QE} = \sqrt{|q|^2 + m^2} - m$ и $\omega_{\Delta} = \sqrt{|q|^2 + m_{\Delta}^2} - m$ в диапазоне W pprox 1.14 - 1.16ГэВ. При больших переданных импульсах Δ и QE пики перекрываются.

Для определения M_A использовался метод χ² для дифференциальных dσ/dQ² (1D фит) и дважды-дифференциальных d²σ/dTd cos θ (2D фит) ССQE-like сечений A. A. Aguilar-Arevalo et al. PRD81, 092005 (2018)

$$\begin{split} \chi^2_{1D} &= \sum_{k=1}^{N} \left[\frac{(d\sigma/dQ^2_{QE})^{data}_k - (d\sigma/dQ^2)^{th}_k}{\Delta(d\sigma/dQ^2)_k} \right]^2 \to 1\mathrm{D} \\ \chi^2_{2D} &= \sum_{l=1}^{M} \left[\frac{(d^2\sigma/dTd\cos\theta)^{data}_l - (d^2\sigma/dTd\cos\theta)^{th}_l}{\Delta(d^2\sigma/dTd\cos\theta)_l} \right]^2 \to 2\mathrm{D}, \end{split}$$

где $(d\sigma/dQ^2)^{th}$ и $(d\sigma/dQ^2_{QE})^{data}$ функции Q^2 и Q^2_{QE} , соответственно, а $\Delta(d\sigma/dQ^2)_k$ и $\Delta(d^2\sigma/dTd\cos\theta)_l$ – диагональные элементы ковариационной матрицы ошибок.

- Результаты χ^2 фита по поиску M_A : 1D фит - $M_A = 1.17 \pm 0.03$ ГэВ и $\chi^2/DOF = 19/13$. 2D фит - $M_A = 1.24 \pm 0.09$ ГэВ и $\chi^2/DOF = 62/136$.
- ▶ 1D+2D фит $M_A = 1.20 \pm 0.06$ ГэВ и $\chi^2/DOF = 111/150$
- ▶ Результаты в пределах ошибок согласуются со значением $M_A = 1.15 \pm 0.03$ ГэВ, полученным в C. Wilkinson et al.PRD93, 072010 (2016) and C. Wilkinson, Ph.D. thesis, University of Sheffild, (2015).

Сравнение 1D-2D фита с данными MiniBooNE

Усредненные по потоку сечения $d^2\sigma/dTd\cos\theta$ на нейтрон для ν_{μ} ССQE-like рассеяния, как функции угла рассеяния мюона для различных бинов по кинетической энергии мюона. Сечения посчитаны в рамках RDWIA+MEC модели с $M_A = 1.2$ ГэВ. Вклады QE и 2p - 2h MEC представлены отдельно. Данные MiniBooNE показаны точками с ошибкой по форме распределения.

< □ > < @ > < 言 > < 言 > 言 の Q ℃ 10/17

Сравнение 1D-2D фита с данными MiniBooNE

Усредненные по потоку сечения $d^2\sigma/dTd\cos\theta$ на нейтрон для ν_{μ} ССQE-like рассеяния, как функции кинетической энергии мюона Т для различных бинов по углу рассеяния мюона. Сечения посчитаны в рамках RDWIA+MEC модели с $M_A = 1.2$ ГэВ. Вклады QE и 2p - 2h MEC представлены отдельно. Данные MiniBooNE показаны точками с ошибкой по форме распределения.

Сравнение 1D-2D фита с данными MiniBooNE

Усредненные по потоку сечения (а) $d\sigma/dQ^2$ как функция Q^2 (верхний рисунок), (b) $d\sigma/dT$ как функция кинетической энергии T (средний рисунок) и (с) $d\sigma/d\cos\theta$ для T > 0.2 ГэВ как функция $\cos\theta$ (нижний рисунок) ν_{μ} CCQE-like рассеяния на нейтрон. Сечения посчитаны в рамках RDWIA+MEC модели с $M_A = 1.2$ ГэВ. Вклады QE и 2p - 2h MEC представлены отдельно. Данные MiniBooNE показаны точками с ошибкой по форме распределения.

В детекторе NOvA CCQE-like рассеяние происходит в основном на ${}^{12}C$ и ${}^{35}Cl$. Массовая доля углерода $\alpha_{C} = 0.806$ и хлора $\alpha_{Cl} = 0.194$. Сечения рассеяния на нейтрон были оценены как рассеяние на углероде σ_{C} и на аргоне σ_{Ar} A. Butkevich, PRC 85, 065501 (2012), G.D. Megias et al., J. Phys.G46, 015104 (2019). Оценка для NOvA усредненных по потоку сечений $d\sigma/dQ^2$ на нейтрон для ν_{μ} CCQE и 2p-2h МЕС рассеяния (верхний рисунок) и отношения σ_{Ar}/σ_{C} для CCQE и MEC как функции Q^2 .

Оценка для NOvA усредненных по потоку и по массе мишени сечений $\sigma_{MIX} = \alpha_C \sigma_C + \alpha_{CI} \sigma_{Ar}$ $d^2\sigma/dTd\cos\theta$ на нейтрон для ν_{μ} CCQE-like рассеяния, как функция угла рассеяния мюона для различных бинов по кинетической энергии мюона, где $\sigma_C(\sigma_{Ar})$ сечение рассеяния нейтрино на $^{12}C(^{40}Ar)$. Сечения посчитаны в рамках RDWIA+MEC модели с $M_A = 1.2$ ГэВ. Вклады QE и 2p - 2h MEC представлены отдельно.

Оценка для NOvA усредненных по потоку и по массе мишени сечений $\sigma_{MIX} = \alpha_C \sigma_C + \alpha_{CI} \sigma_{Ar}$ $d^2\sigma/dTd\cos\theta$ на нейтрон для ν_{μ} CCQE-like рассеяния, как функция кинетической энергии мюона для различных бинов по углу рассеяния мюона, где $\sigma_{C}(\sigma_{Ar})$ сечение рассеяния нейтрино на $^{12}C(^{40}Ar)$. Сечения посчитаны в рамках RDWIA+MEC модели с $M_A = 1.2$ ГэВ. Вклады QE и 2p - 2h MEC представлены отдельно.

Оценка для NOvA усредненных по потоку сечений (а) $d\sigma/dT$ для $0.6 < cos\Theta < 1$ как функция кинетической энергии мюона, (b) $d\sigma/dcos\Theta$ для 0.2 < T < 3.5 ГэВ как функция угла рассеяния мюона, (с) $d\sigma/dQ^2$ как функция $Q^2 \nu_{\mu}$ CCQE-like рассеяния на нейтрон. Сечения посчитаны в рамках RDWIA+MEC модели с $M_{A} = 1.2$ ГэВ. Вклады QE и 2p - 2h MEC представлены отдельно. (d) Отношение $(d\sigma/dQ^2)_{QE+MEC}$ к истинным QE $(d\sigma/dQ^2)_{OF}$, посчитанное для экспериментов MiniBooNE и NOvA.

- В подходе RDWIA+MEC посчитаны вклады CCQE-like процессов при рассеянии лептонов. Модель проверена в векторном секторе, т.е. при описании данных по рассеянию электронов.
- ▶ В рамках RDWIA+MEC модели построен фит к данным MiniBooNE со свободным параметром аксиальной массой. Получено значение аксиальной массы нуклона $M_A = 1.20$ ГэВ, которое в пределах ошибок согласуются со значением $M_A = 1.15 \pm 0.03$ ГэВ, полученным в С. Wilkinson et al.PRD93, 072010 (2016) and C. Wilkinson, Ph.D. thesis, University of Sheffild, (2015). Мы получили, что вклад 2p-2h в MiniBooNE большой и составляет около 25%.
- ▶ Вычислены усредненные по спектру нейтрино в эксперименте NOvA сечения КУ-подобных событий со значением M_A = 1.20 ГэВ. Вклад двух-частичных токов, обусловленных рассеянием на обменных мезонах, в эксперименте NOvA оценивается как 30-35%.